翻訳と辞書 |
Strictly simple group : ウィキペディア英語版 | Strictly simple group In mathematics, in the field of group theory, a group is said to be strictly simple if it has no proper nontrivial ascendant subgroups. That is, is a strictly simple group if the only ascendant subgroups of are (the trivial subgroup), and itself (the whole group). In the finite case, a group is strictly simple if and only if it is simple. However, in the infinite case, strictly simple is a stronger property than simple. ==See also==
* Serial subgroup * Absolutely simple group
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Strictly simple group」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|